Upregulation of renal sodium transporters in D5 dopamine receptor-deficient mice.
نویسندگان
چکیده
D(5) dopamine receptor (D(5)R)-deficient (D(5)(-/-)) mice have hypertension that is aggravated by an increase in sodium intake. The present experiments were designed to test the hypothesis that a dysregulation of renal sodium transporters is related to the salt sensitivity in D(5)(-/-) mice. D(5)R was expressed in the renal proximal tubule, thick ascending limb, distal convoluted tubule, and cortical and outer medullary collecting ducts in D(5)(+/+) mice. On a control Na(+) diet, renal protein expressions of NKCC2 (sodium-potassium-2 chloride cotransporter), sodium chloride cotransporter, and alpha and gamma subunits of the epithelial sodium channel were greater in D(5)(-/-) than in D(5)(+/+) mice. Renal renin abundance and urine aldosterone levels were similar but renal angiotensin II type 1 receptor (AT(1)R) protein expression was increased in D(5)(-/-) mice. An elevated Na(+) diet increased further the elevated blood pressure of D(5)(-/-) mice but did not affect the normal blood pressure of D(5)(+/+) mice. The increased levels of NKCC2, sodium chloride cotransporter, and alpha and gamma subunits of the epithelial sodium channel persisted with the elevated Na(+) diet and unaffected by chronic AT(1)R blockade (losartan) in D(5)(-/-) mice. The expressions of proximal sodium transporters NHE3 (sodium hydrogen exchanger type 3) and NaPi2 (sodium phosphate cotransporter type 2) were increased by the elevated Na(+) diet in D(5)(-/-) mice; the increased expression of NHE3 but not NaPi2 was abolished by AT(1)R blockade. Our findings suggest that the increased protein expression of sodium transporters/channels in distal nephron segments may be the direct consequence of the disruption of D(5)R, independent of the renin-angiotensin aldosterone system.
منابع مشابه
Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice
Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-d...
متن کاملNovel gastro-renal axis and sodium regulation during hypertension.
H ypertension is one of the most prevalent multifacto-rial cardiovascular disorders caused by both genetic and environmental factors. Overwhelming evidence shows that abnormal sodium regulation because of either hereditary factors or overconsumption of salt may lead to salt-sensitive hypertension. Sodium regulation is complex mainly because of its dependence on neuronal, hormonal, and local fac...
متن کاملD5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure.
Activation of D1-like receptors (D1 and/or D5) induces antioxidant responses; however, the mechanism(s) involved in their antioxidant actions are not known. We hypothesized that stimulation of the D5 receptor inhibits NADPH oxidase activity, and thus the production of reactive oxygen species (ROS). We investigated this issue in D5 receptor-deficient (D5-/-) and wild-type (D5+/+) mice. NADPH oxi...
متن کاملInteraction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells.
Angiotensin II type 1 (AT1) receptor and D1 and D3 dopamine receptors directly interact in renal proximal tubule (RPT) cells from normotensive Wistar-Kyoto rats (WKY). There is indirect evidence for a D5 and AT1 receptor interaction in WKY and spontaneously hypertensive rats (SHR). Therefore, we sought direct evidence of an interaction between AT1 and D5 receptors in RPT cells. D5 and AT1 recep...
متن کاملMice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive.
Dopamine is an important transmitter in the CNS and PNS, critically regulating numerous neuropsychiatric and physiological functions. These actions of dopamine are mediated by five distinct receptor subtypes. Of these receptors, probably the least understood in terms of physiological functions is the D5 receptor subtype. To better understand the role of the D5 dopamine receptor (DAR) in normal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 55 6 شماره
صفحات -
تاریخ انتشار 2010